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ABSTRACT

The language faculty is physically realized in the neurobiological infrastructure of the human
brain. Despite significant efforts, an integrated understanding of this system remains a
formidable challenge. What is missing from most theoretical accounts is a specification of
the neural mechanisms that implement language function. Computational models that have
been put forward generally lack an explicit neurobiological foundation. We propose a
neurobiologically informed causal modeling approach which offers a framework for how to
bridge this gap. A neurobiological causal model is a mechanistic description of language
processing that is grounded in, and constrained by, the characteristics of the neurobiological
substrate. It intends to model the generators of language behavior at the level of
implementational causality. We describe key features and neurobiological component parts
from which causal models can be built and provide guidelines on how to implement them in
model simulations. Then we outline how this approach can shed new light on the core
computational machinery for language, the long-term storage of words in the mental lexicon
and combinatorial processing in sentence comprehension. In contrast to cognitive theories of
behavior, causal models are formulated in the “machine language” of neurobiology which is
universal to human cognition. We argue that neurobiological causal modeling should be
pursued in addition to existing approaches. Eventually, this approach will allow us to develop
an explicit computational neurobiology of language.

“You can’t go to a physics conference and say: I’ve got a great theory. It accounts for every-
thing and is so simple it can be captured in two words: Anything goes.” (Noam Chomsky,
2022, as cited in Marcus, 2022)

THE CORE COMPUTATIONAL MACHINERY FOR LANGUAGE

Sentence comprehension requires at least two functional components, a long-term storage of
words and their feature structure (mental lexicon) and a combinatorial device (unification) that
integrates sequential information into structured representations over time (Hagoort, 2005,
2019; Jackendoff, 2002). These components interact during real-time incremental processing
and mutually control each other. This process involves linguistic representations at different
grain sizes, from phonemes to words, phrases and sentences (Dehaene et al., 2015), and mem-
ory on multiple time scales, ranging from milliseconds to minutes and a lifetime (Hasson et al.,
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2015). An adaptive processing dynamics shaped by ontogenetic development (genes and
experience) operates on these linguistic primitives and ties them together in processing mem-
ory (Petersson & Hagoort, 2012). The computational machinery that supports these operations
is implemented in neurobiological infrastructure at different spatial scales, from single neurons
and synapses to cortical layers, microcolumns, brain regions and large-scale networks. A the-
ory of language processing that aims to be complete needs to explain how this machinery is
realized within the neurobiology of the language system across spatial and temporal scales.
(We use “language system” as short-hand for language-relevant brain regions without implying
that these regions are functionally exclusive to language.) This explanatory goal is shared by
most researchers in the field, but an integrated account has not been accomplished thus far.
Some have argued that we lack even the most basic understanding of how linguistic units are
represented and stored in long-term memory (Poeppel & Idsardi, 2022). In a similar vein, the
neurobiological basis of processing memory for unification is currently unknown (Fields,
2022; Fitz et al., 2020). In this perspective article, we describe a computational modeling
approach that maps out a way forward for the language sciences in order to achieve this
explanatory goal. This approach aims toward a fundamental understanding of core language
function from first principles of neurobiology.

MULTIPLE EXPLANATORY STRATEGIES

Language as a neurobiological system needs to be distinguished from its behavioral output, which
includes speech, sign, or text in production and sentence interpretations in comprehension.
Although the language system is used for communication and thinking, these phenomena should
not be mistaken for the system itself (Jackendoff, 2002). A key question is how to link behavioral
output to the computational machinery of the neurobiological system that generates the output.
This is one of the fundamental challenges in explaining natural language in mechanistic terms.

The experimental approach sets out at the top or functional level of description and
attempts to infer processing theories from measured input-output relations (Figure 1).

Time scale:
A characteristic time span within
which a particular change in a
dynamical variable takes place.

Figure 1. Three approaches toward understanding language as a cognitive system. Cognitive information processing systems can be
described at different levels of explanation, here exemplified by the functional, algorithmic, and implementational levels (Marr, 1982). A com-
plete understanding of such a system would allow us to traverse seamlessly between levels in all directions. Although the three levels will have
to be augmented with additional ones (Churchland & Sejnowski, 1988; Tanenbaum & Austin, 2013), this broad distinction has been fruitful in
partitioning the problem space. This explanatory challenge can be approached in different ways. Experimental language science has attempted
to infer processing theories from observed input–output relations (left). Cognitive modeling has proposed a large array of algorithms that can
each reproduce some aspects of these relations (center). Causal modeling starts from neurobiological principles to synthesize an explanatory
language model which is, first and foremost, a model of the system itself (right). Ideally, such a model will eventually explain all behavioral
data generated by the system.
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(Note, the top level refers to what is being computed, i.e., which recursive function ϕ.
Marr’s [1982] term “computational level” is unfortunate because it creates confusion with
algorithm.) These are often informal verbal theories that do not reach algorithmic specific-
ity. Moreover, current experimental methods are relatively coarse and do not allow the
reconstruction of simple computational devices whose functionality is known (Jonas &
Kording, 2017). This complicates the reverse engineering of cognitive systems from exper-
imental data, which therefore has to be complemented with other methods. One such
approach has tried to map these relations algorithmically through cognitive modeling. Dif-
ferent frameworks have been proposed (e.g., connectionist, symbolic, hybrid, Bayesian)
that each captures some aspect of language behavior, but so far this approach has not
resulted in a unified picture of linguistic computation. Since any finite collection of data
can be re-coded by many different formalisms, success in approximating behavior algorith-
mically does not automatically guarantee neurobiological realism. The chances that a stip-
ulated algorithm provides a correct description of the actual computational machinery is
small, no matter how well the formalism fits with behavioral data. Independent evidence is
needed to establish realism which, by necessity, must stem from the neurobiological char-
acteristics of the very system that is being modeled. In the absence of such neurobiological
constraints, cognitive models remain high-level abstractions whose relationship to the
implementational substrate is unclear.

For these reasons, we argue that a third explanatory strategy should be pursued urgently,
and concurrent with, the more traditional approaches shown in Figure 1. This strategy puts a
premium on neurobiology as a primary source of evidence and attempts to model the
language system at the implementational level of description. We refer to this approach as
neurobiological causal modeling. In our terminology, a causal model is a set of functional
equations that describes the dynamics of a system at the level of neurobiological causality.
This concept differs from the structural causal models of Pearl (2000), dynamic causal model-
ing (Friston et al., 2003), or models of causality itself (Granger, 1969). A causal model is built
directly on established neurobiological principles without making ad hoc assumptions about
algorithmic procedures and component parts (Figure 2). The goal of this approach is to
synthesize an explanatory language model that can uniformly explain linguistic behavior
across different experiments. Unlike most existing approaches, causal modeling draws on a
wealth of additional insights from neuroanatomy (Petrides, 2013; Tremblay & Dick, 2016),

Figure 2. First principles of neurobiology. Features of the nervous system that are largely uncontroversial in neurobiology form the basis of
causal language models. These can be viewed as boundary conditions that constrain proposed mechanisms for language processing. Causal
modeling seeks to understand the computational role of these features in relation to language processing and integrate the implementational
level with the algorithmic and functional levels of description.
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neurophysiology (Kandel et al., 2012; Luo, 2015; Sterling & Laughlin, 2015), and biophysics
(Koch, 1998) that inform model construction. The implementational building blocks derived
from these knowledge sources can provide the necessary constraints for a computational neu-
robiology of language that ultimately integrates across all levels of description.

The case for neurobiological constraints on models of cognition was made in the seminal
work of Churchland and Sejnowski (1992) and has been reiterated by others since then (e.g.,
Astle et al., 2023; O’Reilly, 2006; Pulvermüller et al., 2021). One way to approach this issue is
to constrain existing neurocognitive architectures in order to increase their biological plausi-
bility (Pulvermüller et al., 2021). Another approach, which we advocate here, is to systema-
tically assemble computational language models from known neurobiological primitives at the
implementational level (Figure 2). Although superficially similar, the former approach is reduc-
tive in nature while the latter is synthetic. To prevent early misunderstanding, neurobiological
causal language modeling does not strive to dispense with function or algorithm, which are
integral to a complete explanation. On the contrary, causal modeling aims to firmly ground
linguistic behavior and cognitive theory in the causal characteristics of the actual language
system and its concrete neurobiological instantiation.

FIRST PRINCIPLES OF NEUROBIOLOGY

The language system of the human brain is a particular instance of a sparsely connected recur-
rent network of biological neurons and chemical synapses. This theoretical framework is suf-
ficiently expressive to capture all anatomical connectivity, including connectivity between
brain regions, the laminar structure within cortical columns, synaptic motifs within and
between layers, and randomness at the microscopic scale. In the context of recurrent net-
works, there is no fundamental difference between connectivity patterns at different spatial
scales. Since a static structured connectome by itself is nonexplanatory (Bargmann,
2012), it is critical to also realistically model neural interactions and the information flow
across this graph.

Fast signaling in the nervous system is based on action potentials, which are all-or-none
neuronal responses to analog input. Spikes are the basic units of cortical information process-
ing, and it has been argued that their temporal relations play an important role in the encod-
ing, representation, and transmission of processing outcomes (Brette, 2015; Gerstner et al.,
1997). Neurobiological language models are needed that can express the temporal dimen-
sion of spike-based processing and resolve the mismatch between the time scales of action
potentials and cognitive behavior (Chaudhuri & Fiete, 2016). Biological neurons exhibit a
wide range of electrophysiological behavior, from tonic spiking to bursting and adaptation,
and this diversity of observed firing patterns is likely to have functional significance (Gerstner
et al., 2014; Koch, 1998). Neuronal spike responses result from the integration of synaptic
inputs on the spatial structure of the dendritic tree, which amounts to more than linear sum-
mation. The spatio-temporal nature of dendritic integration gives rise to complex, nonlinear
processing effects that are not captured by simpler point neurons (Gidon et al., 2020; London
& Häusser, 2005; Payeur et al., 2019). Thus, the input–output behavior of neurons as the
fundamental computational unit is substantially richer than has been assumed (Larkum,
2022). Dendritic morphology is one of the candidate features that may account for
species-specific cognitive functions (Fişek & Häusser, 2020), including language, and multi-
compartment neuron models can be viewed as interconnected computational elements that
are all potential targets for learning and adaptation (see Quaresima et al., 2023, for an explicit
modeling account).

Laminar structure:
Neocortical organization into six
layers with characteristic
connectivity within and between
layers that forms cortical
microcircuits.

Synaptic motif:
Synaptic connectivity pattern
involving a small number of neurons,
e.g., the bidirectional coupling
between excitatory cells, or feed-
forward inhibition.

Action potential:
Brief electrical pulse (spike), with a
generic shape and duration (1–2 ms)
generated at the cell body when a
threshold is exceeded. It propagates
down the axon, which connects to
the dendrites of other neurons
through one or more synapses.

Dendrite:
Branched, tree-like structure
protruding from the cell body of a
neuron that integrates synaptic input
to change the neuron’s membrane
potential.

Point neuron:
Mathematical model of a biological
neuron that lumps all neuronal
structure into a single, homogeneous
compartment that receives input
signals and generates output spikes.
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Neurons connect via excitatory or inhibitory synapses but not both at the same time, and
synapses do not change sign during learning and development (Strata & Harvey, 1999), as is
the case in virtually all connectionist and deep learning models of language processing. Major
synapse types include fast and slow excitatory and inhibitory ones that generate postsynaptic
currents with different polarity, amplitudes, and rise and decay time scales (Destexhe et al.,
1998). Synaptic learning and memory are subserved by a variety of unsupervised learning
principles (Magee & Grienberger, 2020) that include activity-dependent, short-term synaptic
changes (Markram et al., 1998), mechanisms for long-term potentiation and depression based
on the timing of pre- and post-synaptic spikes (Markram et al., 1997), as well as synaptic con-
solidation on much longer time scales (Clopath, 2012). In addition, reward-modulated learn-
ing (Frémaux & Gerstner, 2016) and more powerful error-driven learning mechanisms also
play a role (Payeur et al., 2021; Whittington & Bogacz, 2019).

To temper runaway processes due to Hebbian plasticity, homeostatic mechanisms need to
ensure that single-neuron and circuit firing rates remain within physiological ranges (Tetzlaff
et al., 2012; Turrigiano & Nelson, 2004). These mechanisms act, e.g., by scaling synaptic
conductances or by downregulating neuronal excitability. Furthermore, language-relevant net-
works need to function in the presence of endogenous background activity and stochastic
variability at the cellular and synaptic level (Faisal et al., 2008; Nolte et al., 2019). These noise
sources reduce the computational capacity of the system to that of Turing machines with finite
tapes, i.e., finite-state machines, by limiting processing precision and effective memory capac-
ity (Maass & Orponen, 1998; Petersson, 2005). In addition, we note that in parallel with the
fast processing systems outlined above, there are neuromodulatory systems (e.g., mono-
amines, neuropeptides) that are different in nature from the fast conductance-based signaling
systems. They typically originate in the midbrain/brainstem, with widespread cortical–
subcortical projections, operate on longer time scales, and directly regulate the intracellular
biochemistry via G protein coupled receptors. These systems modulate fast neural processing,
and it has been suggested that they support unconventional computation and neuronal mem-
ory (Bechtel, 2022; Bray, 2009; Koch, 1998).

This inventory of neurobiological principles constitutes the foundation of causal modeling
and imposes strong constraints on the computational realization of language (Figure 2). Impor-
tantly, these constraints are both constructive and limitative. On the one hand, they specify the
basic building blocks of neurobiological language models and thus provide an evidence-based
implementational scaffold for causal modeling. Mathematical models of these component
parts have been carefully developed by experimental and theoretical neuroscientists to closely
capture the net effects of physiological processes quantitatively (Box 1). The objective of
causal modeling is to explain language processing in terms of these neurobiological principles
that characterize the mechanics of the real system. On the other hand, these constraints curb
arbitrary choices made in cognitive language modeling and deep learning models at the level
of component parts and algorithms. In order to establish valid abstractions, it is necessary to
scientifically demonstrate that these abstractions can be reduced to the level of neurobiolog-
ical implementation. Pending such reductions, algorithmic explanations that are obtained by
abstracting away from elementary features of the nervous system run a high risk of being
spurious.

DYNAMICAL SYSTEMS VIEW ON LANGUAGE

The neurobiology of language fits naturally within a description of language processing in
terms of a specific continuous-time adaptive dynamical system built from neurobiological

Unsupervised learning:
Innate, self-organized form of
learning that detects patterns in
unlabeled input without explicit
instruction.

Homeostasis:
When physiological variables
deviate from a pre-set range of
values, self-correcting feedback
restores a dynamic equilibrium to
retain stability.

Conductance:
The ease with which an electric
current flows through an object or
material; the inverse of resistance.

Neuropeptide:
Signaling molecule, or chemical
messenger, that diffuses over broad
areas and modulates neural activity.

Monoamine:
Class of neurotransmitters that alter
the processing characteristics of
entire circuits beyond the single
synapse; e.g., dopamine, serotonin,
histamine.

G protein:
Protein that transmits signals from the
exterior to the interior of a cell, acting
as a molecular switch.

Receptor:
Transmembrane protein that is
activated by a neurotransmitter and
regulates the activity of synaptic ion
channels across the cell membrane.
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components. Here we provide a terse mathematical formalization of such a system S in terms
of interacting functional components that are coupled via a neurobiologically specified pro-
cessing dynamics P and adaptive learning mechanisms L (Figure 3). Note that P and L are
multivariate and each component is associated with a physical measurement unit.

P maps an internal state s 2 Ω and an input i 2 � onto a new internal state ŝ = s(t + dt ) =
s(t ) + ds(t ). States s are real-valued tuples of dynamical variables in neurobiology, e.g., mem-
brane potentials and synaptic conductances, that describe the language system across all spa-
tial scales. Input i is provided to P by the environment that the system is embedded through an

Dynamical variable:
A physical quantity whose numerical
value changes over time, describing
some aspect of the system’s state,
e.g., the membrane potential of a
neuron, or the conductance of a
particular synapse.

Box 1. Causal modeling toolbox.
Although causal models operate at the implementational level, the aim is not to replicate
reality in all its complexity. Instead, physiological processes are modeled in a phenomeno-
logically effective manner. For many of the neurobiological features in Figure 2, reduced
mathematical models exist from which causal networks of language function can be assem-
bled, largely in the form of systems of coupled differential equations.

The distribution of cortical spikes can, under suitable circumstances, be approximated by
Poisson processes (Softky & Koch, 1993) to encode input as frozen noise. This is an example
of how one can create a spatio-temporal code for linguistic units which carries more informa-
tion than a rate-based code (Duarte et al., 2018; Uhlmann, 2020). The two-dimensional,
adaptive-exponential neuron is able to produce a wide range of firing patterns (Brette &
Gerstner, 2005) and accurately predicts in vitro spike times (Rossant et al., 2011). Synapses
can be modeled as alpha functions or the difference between two exponentials that describe
the rise and decay times of post-synaptic currents (Roth & van Rossum, 2009), and
conductance-based coupling supports realistic population dynamics (Cavallari et al., 2014).
Event-driven simulation can be used to efficiently model axonal delays for long-range con-
nectivity patterns. Short-term synaptic facilitation and depression is modeled in terms of
neurotransmitter release probability and depletion (Markram et al., 1998), and this mecha-
nism has been implicated in working memory function (Mongillo et al., 2008). Excitatory
long-term potentiation and depression are conceptualized as Hebbian spike-timing depen-
dent plasticity (STDP). Several similar formalisms exist which are based, e.g., on triplets of
spikes (Pfister & Gerstner, 2006), or on pre- and post-synaptic voltage traces (Clopath et al.,
2010). The latter rule allows for strong bidirectional potentiation, which has been observed
experimentally. To counteract dynamic instability due to STDP, inhibitory plasticity acts on
inhibitory synapses to maintain a target firing rate (Luz & Shamir, 2012; Vogels et al., 2011).
This form of plasticity also establishes a local balance between excitatory and inhibitory syn-
aptic inputs to each neuron and is conducive to achieving asynchronous, irregular spiking
activity, which plays an important role in cortical information processing (Herstel & Wieringa,
2021; van Vreeswijk & Sompolinsky, 1996). Synaptic normalization is another homeostatic
principle which counteracts uncontrolled synaptic growth due to STDP while preserving syn-
aptic specificity (Turrigiano, 2008). On longer time scales, relevance signaling and synaptic
tagging models have been developed that prevent overwriting and enable memory consoli-
dation (Clopath et al., 2008; Ding et al., 2022; Ziegler et al., 2015). What has been missing
from this inventory of neurobiological components, until recently, are computationally effi-
cient multicompartmental neuron models, capable of reproducing nonlinear dendritic inte-
gration effects that have been described experimentally (Koch, 1998; London & Häusser,
2005; Payeur et al., 2019; Poirazi & Papoutsi, 2020). The Tripod neuron proposes a structural
reduction of the dendritic tree to fill this gap and can now be used to investigate the functional
role of dendritic integration in large networks (Quaresima et al., 2023).

Causal language modeling is further supported by flexible, high-level spiking network
simulators (Gewaltig & Diesmann, 2007; Stimberg et al., 2019), code-sharing platforms
(McDougal et al., 2017), and programming languages for high performance scientific com-
puting (Bezanson et al., 2017).

Poisson process:
A stochastic event process where
random events are independent of
each other and the time between
events follows an exponential
distribution.

Neurotransmitter:
Molecule that transmits signals
across a chemical synapse from one
neuron to another, e.g., glutamate or
γ-aminobutyric acid (GABA).
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interface (e.g., a speech sound transduced by the cochlea), and the optional output λ of P is
translated into an internal action or an external motor response (e.g., articulation). State tran-
sition is characterized by coupled stochastic differential equations ds(t) = P(s, i, m)dt + dξ(t)
that are parameterized in m (see below) and coupled to noise processes ξ(t). Thus, information
processing is represented as an input-driven, or forced, trajectory through the system’s state
space Ω and, importantly, is constrained by the dynamics P. In classical terminology this is
the infinitesimal version of the process logic of a Turing machine, i.e., its machine or transition
table. For instance, in language comprehension, a subsystem of P can be understood as the
parser associated with S. Since ds(t), and therefore the next state ŝ, is recursively determined by
the continuous action of P , language processing in this framework is naturally incremental,
recursive, and state-dependent, as in classical theories of computation (Buonomano & Maass,
2009; Petersson & Hagoort, 2012).

P is intertwined with a dynamics L for development, learning, and adaptation that governs
the evolution of S as a function of linguistic experience and maturation. This is formalized as
dm(t ) = L(m, s, t )dt + dη(t ) where the learning parameters m belong to the model space M =
{m|m can be realized by S} and η(t ) is another noise process. The elements of M are high-
dimensional tuples of synaptic, neuronal, and other adaptive parameters in the language net-
work, and the dynamics L is a set of neurobiological learning principles. In contrast to P, L is
explicitly dependent on time T which captures the notion of innately guided maturation pro-
cesses. At any point in time, S is in a particular developmental state m(t ) and L carves out a
trajectory in M as the system matures. However, since L is coupled back to P via m, the pro-
cessing characteristics of S themselves change over time, and the fixed points of L mark the
developmental end-state of adult competence. Prior knowledge of language (Chomsky, 1986)

Figure 3. Schematic of an adaptive information processing system S for language. Based on input
from the system embedding (environment; an element of �), the current state (an element of Ω), and
current parameters in the model space M, the processing dynamics P traces out a trajectory in neu-
ral state space and returns language output λ. The learning mechanisms L are coupled to P creating
continuous cycles of information encoding into, and retrieval from, memory that operates on mul-
tiple time scales for short-term and long-term storage as well as development. For instance, in the
case of ontogenesis, L implements developmental processes and genetically guided maturation
dependent on time T, while P instantiates the parsing capacity that evolves towards adult compe-
tence as a function of L’s trajectory through the model space M. On shorter time scales, L imple-
ments an active processing memory, and because the form of L is structurally similar to P , it is
possible that learning and memory mechanisms are actively computing on relevant time scales
as well (e.g., in transforming episodic memories into general world knowledge as a consequence
of repetition during consolidation). Figure adapted from Petersson and Hagoort (2012).
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is incorporated into S as a structured initial state m(t0), or as additional constraints on P, L, or
M, the so-called language acquisition device (cf. Petersson & Hagoort, 2012). The initial state
is the outcome of gene-regulatory development of the language-ready brain, optimized by bio-
logical evolution, and subsequently fine-tuned through linguistic experience during acquisi-
tion (Zador, 2019). Due to the fact that the complete dynamics of S is also shaped by linguistic
interaction with a cultural environment, the neurobiological language system is a biocultural
hybrid (Evans & Levinson, 2009).

Consequently, the general form of the language system S is an adaptive system of interact-
ing dynamical variables in neurophysiology whose state transitions are determined by the
coupled dynamics for processing P and learning/development L. At any developmental stage,
the algorithmic nature of P and L is determined by neurobiology, and one objective of causal
modeling is to characterize these dynamics and interpret them in language processing terms.
Without a cognitive interpretation, S remains an unanalyzed system that moves in time.
Another important goal of causal modeling is to identify the language-relevant representational
states of S which are expected to be evoked spatio-temporal transients in ongoing processing
(Petersson, 2008; Rabinovich et al., 2008).

The dynamical systems perspective characterizes language processing in full general-
ity and with formal precision. This allows us to clearly identify the different explananda—
processing, learning, maturation, and the initial state—and how they interact. Component
parts of causal models are expressed as continuous-time differential equations coupled into
a functional architecture defined by the connectome. Every instantiation of a causal lan-
guage model built from such component parts ipso facto is a specific claim about, and a
concrete algorithmic proposal of how, the processing and learning dynamics P and L could
be implemented at the level of neurobiology. Hence, there is a natural relationship between
the neurobiological dynamical system and causal language modeling, whereas this link is
either missing or contrived for models that are not formulated in causal terms.

HIERARCHY AND BINDING IN NEURAL PROCESSING

Language is characterized in terms of hierarchical structures that describe the representations
that the comprehension system needs to compute when parsing an utterance. Hierarchical
dependencies between constituents are ubiquitous at all linguistic levels, from phonemes
and syllables to words, phrases, clauses, and sentences (Hagoort, 2019; Hasson et al.,
2015; Jackendoff, 2002). At the same time, language processing is subserved by recurrent net-
works of spiking neurons and chemical synapses, and it is not obvious how hierarchical lin-
guistic structure can be mapped to neurobiology. Thus it has been an enduring debate how
neural systems can accomplish so-called hierarchical processing and this issue is closely tied
to the binding problem.

The apparent conflict between these notions can be resolved when static structural hierar-
chy (represented by parse trees) is interpreted dynamically in neural processing terms (Figure 4)
where words are retrieved from the mental lexicon by an operator R and unified combinato-
rially by a universal function U. Hierarchical processing corresponds to nested function calls,
including recursion, that are executed by the neural parser at the appropriate point in logical
time, augmented with a memory structure, or unification space, to store and retrieve interme-
diate results when needed. The control input for U parametrically switches unification into
different subroutines by function composition. It is supplied by the feature structure of
retrieved words (e.g., lexical categories) or computed internally within processing memory
from the available information (e.g., phrasal categories). Biological networks for unification
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thus require distinct input lines for data and control, similar to the pins on a microprocessor. In
neurobiology this can be achieved by electrotonically segregated dendritic branches that inte-
grate different input types independently (Larkum, 2022; Spratling, 2002). For example, basal
and apical dendrites of cortical pyramidal neurons receive inputs from anatomically distinct
source locations that differentially modulate the somatic response (Binzegger et al., 2004;
Lafourcade et al., 2022; Shepherd, 2004). This spatial separation of distinct classes of inputs
explains how a single neuron (or circuit, for that matter) can play different functional roles in
unification, from one time step to the next.

The translation in Figure 4 shows how to resolve the perceived mismatch between hierar-
chy and brain networks, going from parse trees to function composition to neural processing.
When cast in functional terms, static hierarchical phrase structure trees can be given a
dynamic interpretation in terms of recurrent neural processing with the appropriate memory
structure. It also shows that hierarchical processing does not require the construction of
explicit representations of linguistic trees and their binding relations (as some models have
suggested, e.g., Martin & Doumas, 2017; Papadimitriou & Friederici, 2022; van der Velde
& de Kamps, 2006) because these relations are already implicitly present in the intermediate
processing outcomes of the state-dependent neural parser. As words are being processed one
by one, the system incrementally computes an interpretation in neuronal memory registers,
i.e., dynamical variables in processing memory, which are a particular substate of the com-
plete system state. Parsing “the cat chases a dog” versus “a dog chases the cat” results in dis-
tinct trajectories whose end-states represent different meanings. This procedure is analogous to
evaluating a hierarchically structured arithmetic expression by a compiled program where the
final outcome is a number that corresponds to the correct interpretation, rather than an explicit
structural representation of the binary expression tree. Introspection of constituent structure

Figure 4. Translating linguistic hierarchy into neural processing. Phrase structure trees are rewritten in labeled bracket notation where
brackets correspond to nodes in the tree and labels indicate the category of nodes (orange arrows represent equivalence). Labeled brackets
can be expressed functionally as NP (“the, cat”), and similarly for other phrasal categories in the example sentence. Words that enter into these
function calls are retrieved from the mental lexicon by an operator R that incrementally maps speech sounds si onto word representations wi. A
parameterized function U (unification) is introduced that takes three arguments, a phrasal category and two partial interpretations w, w* that
have either been retrieved by R or computed by previous actions of U. To establish sentence meaning, nested function calls to U are executed
in the correct order as soon as relevant information becomes available (immediacy principle) and the output of U corresponds to the inter-
pretation I of an utterance. During this procedure, lexical items as well as partial interpretations previously computed by U have to be kept in
processing memory until they are being integrated. Processing memory also keeps track of which components have already been unified, and
when, in order to carry out potential revision. Grayscale horizontal bars show the lifetime of information content temporarily held in memory
at each processing step, the vertical arrow indicates logical time. NP = noun phrase; VP = verb phrase.
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requires linguistic knowledge and should not be considered part of automatic language
processing.

Function composition and binding in comprehension rely on data structures that must be
supported by neurobiology. The nature of these data structures determines the kind of unifica-
tion procedures that can run on partial interpretations temporarily held in processing memory.
Data structures and how they are represented in memory are a key organizing principle of
neurobiological information processing systems. For example, the membrane potential, or
other dynamical variables, of a biological neuron assumes real number values. The decimal
expansion of these numbers can naturally be interpreted as a stack memory when combined
with push and pop operations. These operations can be implemented through multiplication
that shifts decimals into (push) or out of (pop) the decimal expansion, and there is evidence
that single neurons can accomplish this (Groschner et al., 2022). More broadly, scaling and
other operations on dynamical variables can be viewed as generalized push and pop
operations.

In classical computability theory (Cutland, 1980), binding is achieved in that variables are
physical memory addresses and the stored bit patterns are their current values. Composite data
structures are then assembled by computing references to existing memory content, e.g., using
pointers. However, since recurrent networks are fully equivalent to the classical notion of
computation (Siegelmann, 1999), binding can also be achieved by neural networks. Binding
is therefore not a fundamental barrier, and it is an empirical question how it is realized within
the specific neurobiological memory architecture. For instance, similar to memory in digital
computers, any dynamical variable in physiology with a non-zero time constant is stateful and
can act as a memory register. Different information sources can be bound in these registers
through temporal integration. Whether this form of binding is sufficient to explain language
comprehension or whether other complex neurobiological data structures are required is an
open issue, and causal models together with experimental work are needed to answer this
question.

OUTLINE OF A CAUSAL LANGUAGE MODEL

Unification instantiates a generic sequence processor that may not be specific to language
(Jackendoff & Audring, 2019; Petersson & Hagoort, 2012) and establishes semantic relations
between constituents (e.g., who does what to whom?) within processing memory (Figure 5).
Traditionally, neurobiological short-term memory has been conceptualized as states of persis-
tent neural activity (Fuster & Alexander, 1971; Goldman-Rakic, 1995). Persistent activity can
be achieved through cellular bistability (Loewenstein & Sompolinsky, 2003; Zylberberg &
Strowbridge, 2017) or attractor dynamics where excitatory feedback enables the replay of
information beyond stimulus offset (Barak & Tsodyks, 2014; Durstewitz et al., 2000). Alterna-
tively, short-term memory has been linked to functional connectivity induced by transient
changes in synaptic efficacy (Fiebig & Lansner, 2017; Mongillo et al., 2008). These theories
can explain maintenance and cued recall, but they have not been developed with language in
mind. A neurobiological processing memory for language also needs to be able to integrate
and transform internal representations in an online, incremental fashion and actively compute
an interpretation from rapid serial input. In addition, this memory system needs to be context-
dependent and sensitive to precedence relations between words. Recent modeling work indi-
cates that these requirements are met by neuronal processing memory (Fitz et al., 2020; Rao
et al., 2022), which is grounded in the observation that neurons exhibit adaptive changes in
excitability as a function of experience (Marder et al., 1996; Turrigiano et al., 1996). This
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intrinsic plasticity is common in excitatory cortical cells (Gouwens et al., 2019), and adaptive
changes can last from milliseconds (Koch, 1998) to seconds (Levy & Bargmann, 2020) to
minutes (Titley et al., 2017). Network simulations have shown that neuronal memory can sup-
port sentence-level semantic processing and that memory span was proportional to the time
constant of spike-rate adaptation (Figure 5). The proposed memory mechanism was also suit-
able to resolve temporary ambiguity and establish binding relations between words and their
semantic roles when queried (Fitz et al., 2020; Uhlmann, 2020). It is likely that other factors
contribute to neuronal memory as well, including the kinetics of NMDA-receptors (Lisman
et al., 1998) and the morphology of dendrites (Papoutsi et al., 2014; Poirazi & Papoutsi,
2020). These two features support the generation of plateau potentials, endowing neurons with
dendritic memory that is useful for structured sequence processing on short time scales
(Quaresima et al., 2023). These findings from causal modeling illustrate how evidence from
neurobiology can generate new hypotheses about the nature of processing memory for lan-
guage. Noncausal models do not express these cellular and synaptic features and might there-
fore miss crucial neurobiological memory mechanisms.

Storage in the mental lexicon requires persistent adaptation on longer time scales than uni-
fication. Engrams in long-term memory are viewed as strongly connected cell assemblies that
encode information into synaptic conductances through spike-timing dependent plasticity
(Caporale & Dan, 2008; Miehl et al., 2023; Poo et al., 2016; but see Gallistel, 2021). There
is less consensus, however, on whether engrams are exclusively located in excitatory synapses
or also involve inhibitory ones (Hennequin et al., 2017), perhaps even primarily (Mongillo

Engram:
A basic unit of information stored in
long-term memory, e.g., a phoneme,
word, or idiomatic expression.

Spike-timing dependent plasticity:
Adaptive mechanism that adjusts the
strength of synapses based on the
relative timing of a neuron’s input
and output spikes, leading to, e.g.,
long-term synaptic potentiation or
depression.

Figure 5. Core computational machinery for language processing. The cognitive architecture for language consists of a mental lexicon for the
encoding, maintenance, and retrieval of words and a unification network for combinatorial processing. Both components require memory on
long and short time scales to different degrees, and their interaction is a form of reciprocal control. Downstream readouts project the neural
states of unification onto a semantic interpretation in real time. The distinction between memory, unification, and control is purely functional; it
is not a claim about anatomical localizability. Any computational system, whether neural or classical, implements these components in one
way or another. Insets from left to right: word representations in the mental lexicon, or engrams, are strongly coupled cell assemblies, recruiting
excitatory or inhibitory synapses, or both (bold arrows); figure adapted from Hennequin et al. (2017). Retrieved words are encoded as spike
trains that drive unification, and information content is better preserved in the timing of spikes than in spike rates, even in the presence of noise;
figure adapted from Uhlmann (2020). Processing memory for unification may be implemented neurobiologically as network attractors, short-
lived synaptic facilitation, or intracellular adaptation that transiently changes neuronal excitability (top to bottom). History-dependent process-
ing in unification, where the current state is folded together with incoming input, separates multiple occurrences of the same word (here “boy”)
in neural state space, and this can be used to establish binding relations between words and their semantic roles; figure adapted from Fitz et al.
(2020).
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et al., 2018). Previous work has shown that engrams can emerge from sparse, random net-
works when multiple mechanisms for unsupervised learning and homeostatic regulation inter-
act dynamically (Litwin-Kumar & Doiron, 2014; Zenke et al., 2015). In these simulations,
acquired memories were relatively stable in the presence of background noise and ongoing
plasticity and could be reactivated reliably after delay. These causal models of long-term stor-
age can serve as a starting point for a neurobiological model of the mental lexicon. A prom-
ising first step in this direction has been taken in Tomasello et al. (2018).

Words in the mental lexicon have a feature structure consisting of, among others,
semantic, syntactic, and morphological attributes that are stored and maintained in the
neurobiological infrastructure of the brain. Words can also include larger units such as,
e.g., collocations, multiword expressions, idioms, or argument-structure constructions. In
retrieval, speech sounds or letter sequences have to be recognized as particular words
while, concurrently, these features are being computed from partial cues (pattern comple-
tion). Hence, there are at least two computational tasks that need to be solved in lexical
retrieval; they happen in parallel and are likely to interact. For example, word recognition
itself might sharpen the selection of features activated prior to the recognition point, per-
haps through lateral inhibition. The computation of lexical features is currently not
addressed by existing models that have focused on recognition only (e.g., those reviewed
in Hannagan et al., 2013; Magnuson et al., 2020; Weber & Scharenborg, 2012). A causal
model of the mental lexicon is needed that can explain how words are represented within the
neurobiological substrate and how their feature structure is “activated” from perceptual input
(Poeppel & Idsardi, 2022). Furthermore, the mental lexicon is language-specific, rapidly
acquired in development through local learning mechanisms, and uniquely human. To
explain these traits in neurobiological terms is another important challenge for causal model-
ing (see Box 3 in the Concluding Remarks).

The mental lexicon and unification continuously interact through feedback loops and
exert reciprocal control (Figure 5). The feature structure of retrieved words controls the com-
binatorial operations of the unification network, and, conversely, the partial interpretations
computed by unification control the context-dependent retrieval process when multiple can-
didates are compatible with the sensory signal. To develop a combined architecture for adult
language processing, the synaptic pathways for information exchange between these differ-
ent functional modules can be fine-tuned using methods from control theory (Kao & Hennequin,
2019), feedback learning (Nicola & Clopath, 2017), or error-based optimization of networks
(Neftci et al., 2019).

Compared to other cognitive domains, causal language modeling is in a privileged position
because linguistic theory/analysis provides an extensive list of conceptual primitives that form
the elementary units of language (which has been referred to as the “parts list”; Poeppel,
2012). In addition, a basic functional architecture can be derived from findings in cognitive
neuroscience and the theory of computation (Figure 5). Hence, causal language modeling can
draw on a rich set of reference points across Marr’s (1982) descriptive hierarchy; we know,
roughly, which units and procedures to look for in neurobiology. However, if conceptual
primitives and computational routines cannot be explicated in neurobiological terms, their
theoretical status may eventually have to be revised.

MODELS OF BEHAVIOR VERSUS THE SYSTEM

Computational language models that operate at the algorithmic level are often tested against
linguistic behavior, i.e., system output or data collected in some experiment. The better a
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model reproduces or predicts behavior, the better it is considered to be validated. There are
other adequacy criteria as well, but behavioral fit is a primary source of evidence in cognitive
modeling. Causal models, on the other hand, are mainly concerned with the neurobiological
mechanisms of the underlying system. They aim to be explanatory at the level of implementa-
tional causality: How do inputs give rise to outputs within the neurobiological machinery for
language? Causal models are therefore not primarily about observations or behavior but—in
the first instance—about the mechanisms that generate behavior. The extent to which the
behavior of a causal model is human-like is determined by the degree to which it approxi-
mates the biophysical characteristics of the actual system; fit with behavioral data is an inde-
pendent outcome and not the immediate modeling goal (Box 2). This approach is reminiscent
of early connectionist language models, which also intended to derive behavior from princi-
ples of neural information processing (e.g., Elman, 1990; McClelland et al., 1989). Today, it is
widely held that these models incorporate too little neurobiological detail (see Figure 2) to be
viewed as causal models of the neurobiological system (Arbib et al., 2000; Craver, 2006;
Karaminis & Thomas, 2012). Deep learning approaches to natural language processing
(see Young et al., 2018, for an overview), which are an extension of the connectionist para-
digm, are very powerful in generating language-like output and might be a useful heuristic.
However, large language models (LLMs) are neither models of human behavior nor models of
the neurobiological machinery. They do not model the causal structure of the language system
nor cognitive function as such (language comprehension differs from next-word prediction;
Bender & Koller, 2020), and they are sometimes inadequate behaviorally in that they fail in
nonhuman ways and do not fail in human ways (Marcus, 2018; but see Linzen & Baroni,
2021, for a different perspective). Using LLMs to fit brain data (e.g., Goldstein et al., 2022;
Schrimpf et al., 2021) is correlational rather than causal in nature. Hence, it is debatable
whether they contribute novel insights to the study of human language at the implementa-
tional level of Marr’s hierarchy.

In models of behavior, variables and parameters are dimensionless scalars that do not cor-
respond to measurable quantities in biological reality and often lack interpretability in cogni-
tive terms (Eckstein et al., 2022). In causal models, they have physical units of measurement
(e.g., mV, nS, pF) that need to fall within physiological bounds. This restricts parameter choices
to empirical ranges, reduces degrees of freedom, and puts strong constraints on the model
space M (see Figure 3). Since units have to match on both sides of dynamical equations, causal
models are also internally consistent. Whereas cognitive models often attempt to capture
behavior with as few parameters as possible, the challenge for causal modeling is to deal with
the abundance of parameters provided by the neurobiological system (e.g., on the order of
≈1014 synaptic conductances). We refer to this distinction as the statistician’s versus the neu-
roscientific perspective. Consequently, standard model selection criteria do not apply in causal
modeling (e.g., Occam’s razor). What needs to be explained is how the neurobiological
language system can generalize appropriately despite being nominally overparameterized
(Hasson et al., 2020). A third difference concerns the relationship between model time and
real physical time. In cognitive models of behavior, time is often expressed in terms of pro-
cessing steps and the relation to physical time is typically arbitrary. In causal models, time
corresponds to real physical time since it arises from the dynamics of neuronal integration
and synaptic transmission (Gerstner et al., 2014). Due to this inherent correspondence, a
causal model would allow us, in principle, to investigate how speech and language pro-
cessing unfold in time at any desired resolution. More importantly, however, causal models
are therefore strongly constrained by real-time processing requirements, whereas models
of behavior typically are not.
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Another difference between models of behavior and causal models of the system is related
to their explanatory status. Output or behavior of a system should not be mistaken for the
mechanisms that generate behavior at the level of physical, or neurobiological, causes. For
example, a statistical model of weather data can have high predictive accuracy, but it is not
a model of Earth’s atmosphere that generates the weather. Similarly, no one would confuse a

Box 2. Methodological road map.
Causal modeling initially puts priority on neurobiological realism over fit with behavioral
data. Therefore, a first step is to create models from neurobiological components parts that
can accomplish core computational tasks involved in language processing at the algorithmic
level. Network features should comply with functionally relevant neurophysiological mea-
surements. These include the electrophysiological properties of different neuron types (e.g.,
their resting potential, rheobase, membrane time constant, spike threshold, etc., that can be
obtained from databases such as NeuroElectro (Tripathy et al., 2014) and the Allen Brain
Map), spontaneous and evoked firing rates (Attwell & Laughlin, 2001; Roxin et al., 2011),
the quantized range of synaptic conductances (Bartol et al., 2015), the ratio of excitation
and inhibition (Abeles, 1991; Xue et al., 2014), and the distribution of major receptor types
across regions in the language network (Duarte et al., 2017; Zilles et al., 2015). Language
models with these characteristics have face validity since they are grounded in experimental
neurobiology. This approach applies equally to networks of any spatial scale, including larger-
scale neocortical or cortico-striatal networks (Haber, 2016; Mountcastle, 1997; Shepherd,
2004). In each case, the connectivity matrix would be structured into blocks with specified
neuron types and local connectivity as well as specific between-region connectivity (cf. also
Pulvermüller et al., 2021).

Key language tasks include, among others, the transduction of auditory signals onto equiv-
alence classes (phonemes), the retrieval of lexical features (semantic, morphosyntactic, etc.)
from these units of speech, and the integration of recognized words into a sentence-level
interpretation (semantic dependency structure). To gauge task performance, simple parallel
readout classifiers can be used as a measurement device that maps nonlinear circuit activity
onto linguistic categories (Buzsáki, 2010; Rigotti et al., 2013). Thus, readouts are a diagnostic
tool to probe whether a given dynamical system can be harnessed to compute linguistic func-
tions. The neurobiological features of this system can then be manipulated (another meaning
of causal modeling) and their computational contribution can be determined through model
comparisons as a method of investigation (Duarte & Morrison, 2019; Fitz et al., 2020;
Uhlmann, 2020). Importantly, failure to achieve these language tasks is inherently meaningful
because it points directly to missing neurobiological features that might be important for lan-
guage processing. In addition, our current best models of neurobiological components may
have to be refined or extended in light of new empirical evidence while the causal modeling
framework does not need to be questioned as such.

Once a basic neurobiological language model has been established, causal modeling can
begin to bridge into empirical data and linguistic behavior. For instance, local field potentials
can be synthesized from perisynaptic activity in simulated spiking networks (Hagen et al.,
2016; Mazzoni et al., 2015) to connect causal models to ECoG, EEG, and MEG data. In sim-
ilar vein, hemodynamic response models have been proposed to link in silico network activity
to fMRI data (Bonaiuto & Arbib, 2014). These methods can be used to relate causal models to
functional neuroimaging. This endeavour also involves statistical approaches to quantifying
single-neuron and population dynamics (Kass et al., 2018; Saxena & Cunningham, 2019) and
the representational analysis of biological networks (Barrett et al., 2019). Novel techniques for
analytic synthesis need to be developed that allow the abstraction of adaptive dynamical sys-
tems to discretized combinatorial models.

Causal modeling advances from neurobiological models of algorithmic capacities to neu-
roimaging data and linguistic behavior. Through incremental model refinement, the core
objective is to uncover the computational role of neurobiological features and synthesize a
computational neurobiology of language across levels of explanation.

Rheobase:
The minimal current amplitude of
infinite duration that results in the
discharge of an action potential.
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regression model of experimental data with a model of the processes that generated the data.
By parity of reasoning, suppose a cognitive language model reproduces all known behavioral
data. This would not guarantee that the model correctly describes the algorithms employed by
the brain, and it would still be unclear whether the model is explanatory with respect to the
causal generators of behavior. This uncertainty persists until it has been demonstrated that a
proposed algorithmic model can be reduced to the relevant neurobiology. Similar uncertainty
afflicts experimental approaches that attempt to reverse engineer the computational machinery
for language from behavioral output. Neuroimaging methods (fMRI, EEG, MEG, etc.) observe
sequences of brain states, i.e., processing outcomes or system behavior in the broadest sense,
but not the neurobiological processing dynamics itself, which is hidden from the measurement
devices. Another complication is that the fMRI signal, for example, is related to the blood oxy-
gen level dependent response which in turn is related indirectly to neural activity. Language
models that are inferred from such data are confounded by these theoretical linking principles,
which need to be factored out in order to arrive at a veridical model of the neurobiological
processing machinery.

Simulations of the language system at the level of implementational causality are not con-
founded in this way and enable us to study candidate processing dynamics with unrivaled
spatio-temporal precision. Moreover, component parts that lack neurobiological support do
not enter into model design to begin with. Reduction has already been achieved at the level
of computational elements and their interaction. Hence, neurobiological causal models
describe the mechanistic generators of linguistic behavior from which observed behavior
can be derived. Without a neurobiological foundation, modeling behavior is not explanatory
with respect to the causal generators of behavior unless such models can be shown to be
reducible to neurobiology. It is understood that a causal modeling approach requires a
long-term perspective; it will take time and effort for it to succeed.

CAUSALITY, REDUCTION AND ABSTRACTION

David Marr (1982) considered the functional level to be the most important one for under-
standing biological information processing systems but emphasized that different questions
need to be addressed at different levels of description. He also pointed out that the different
levels are “logically and causally related” (p. 25). In particular, the algorithmic level is not
autonomous with respect to the implementational level. Among a number of candidate lan-
guage models, it is neurobiology that is going to select the correct one, if any. There might be
multiple abstractions that are equivalent in some deep sense, but there is still a matter of fact in
the brain which of these abstractions is valid. For instance, recursive function theory itself can
be formulated within many different mathematical frameworks, but it is an empirical question
which algorithmic model the brain implements to “run” this theory. Surely, the brain does not
implement language like Conway’s Game of Life or Baba Is You, both of which are Turing
universal (Rendell, 2002; Su, 2023). Thus, although methodologically any of Marr’s levels
can serve as a starting point, neurobiology is ontologically prior since it determines the algo-
rithms that are implemented by the real system which, ultimately, also determine the range of
possible language behavior we can observe. Both algorithm and behavior are caused by the
underlying neurobiology, while the converse is not true.

In light of these dependencies, we should therefore not be satisfied to describe language at
a single level only; the ambition must be to link and traverse levels through explanatory bridg-
ing principles. As an analogy, a structured computer architecture with its many layers of
abstraction can be used through an operating system because the interfaces between layers
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are correctly designed (Tanenbaum & Austin, 2013). In other words, a higher level of abstrac-
tion has to comply with and systematically relate to lower level mechanisms by reduction.
Thus, it is only under the condition of reducibility that we can “ignore” lower levels. What
is currently underspecified in cognitive theories of language are precisely these interfaces
between levels of abstraction. Despite decades of computational work it has not been possible
to connect cognitive language models to neurobiology in a substantial manner. With a few
notable exceptions (Fitz et al., 2020; Rolls & Deco, 2015; Tomasello et al., 2018), models
of language processing that are characterized as neurocomputational or neurally plausible
do not yet make sufficient contact with the basic neurobiological principles described in
Figure 2. This also holds for language models in deep learning. The assumption that we can
abstract away from these principles needs to be scientifically justified because abstraction
without reduction is likely to result in simplifications that may not be valid.

Within the computer metaphor, the terminology of cognitive theory is comparable to a
high-level programming language, like Python or Julia. Underneath this layer of abstraction
lies the hardware-dependent machine language of the implementational substrate. The
machine language determines the basic set of instructions, data types and memory registers
that are instantiated by the actual neurobiological system. This instruction set architecture
(ISA) corresponds to circuits built from biological neurons, their membrane potentials,
spike-generation mechanisms, synaptic currents, dendritic integration, etc. A cognitive theory
of language that is empirically adequate must be realizable in this neurobiological ISA, other-
wise it remains disconnected from the implementational level of description. Causal models,
on the other hand, are directly formulated in the language of the neurobiological ISA and
pinpoint the fundamental computational elements in neurobiology, their interactions, and
how they support language functions.

Although causal models describe language processing in terms of biological neurons and
synapses, one long-term goal is to abstract a homomorphic cognitive model from the neuro-
biological specification that instantiates a correct algorithmic description of the language
faculty. There is, of course, no guarantee that any particular causal model will yield a correct
cognitive theory. But any cognitive theory that is correct needs to be consistent with what is
known about the language system from a neurobiological perspective. A similar point has
been made by Feldman (2006), in more general terms. Through simulation, analysis, and
theoretical insight, the aim is to discover rather than guess the algorithms that operate at
the neural level. These algorithms, in addition, have to explain the breathtaking speed, fault
tolerance, and energy efficiency of the brain system for language. The functionalist doctrine
and multiple realizability, which are only concerned with nonbiological input–output rela-
tions, have no bearing on these issues.

Validation of causal models involves different sources of evidence, including behavior, none of
which is sufficient on its own. In this sense, causal modeling is not intrinsically reductionist but aims
to encompass all of Marr’s levels in the final analysis (Figure 1 and Box 2). Models that are behav-
iorally adequate but violate known neurobiology cannot be correct. Models that are behaviorally
inadequate but consistent with known neurobiology need to be refined. Thus, causal modeling
advocates an iterative approach that seeks to gradually approximate language behavior from first
principles of neurobiology, through cycles of model development, validation, and revision.

CONCLUDING REMARKS

The nature of the language faculty—its representations, storage mechanisms, and elementary
operations—is determined by the neurobiological infrastructure that sustains it. A large
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number of replicable findings from experimental neuroscience (Luo, 2015; Sterling &
Laughlin, 2015) have been formalized as effective mathematical models (Gerstner et al.,
2014) that can readily be used as the basic building blocks for causal language modeling.
Complex systems assembled from these neurobiological component parts are analytically
intractable, and simulation therefore becomes a methodological necessity (Einevoll et al.,
2019; Gerstner et al., 2012). With unprecedented access to computational power and neuro-
biological insight to constrain these simulations, it is the appropriate time to supplement tra-
ditional methods in language research with causal modeling in order to integrate language
across levels of description. Neurobiological causal modeling follows the classical path of sci-
ence in attempting to understand complex systems—e.g., multicellular organisms, condensed

Box 3. Open questions.

• What are the elementary units of language in neurobiological terms (e.g., phonemes,
syllables, words, phrases, clauses, semantic roles, event structure)? Which neural
data structures encode these units and their composition, and how can these data
structures be identified through causal modeling?

• What is the functional role of brain structure in language processing across spatial
scales, including structure in the dendritic tree of neurons, laminar structure in cor-
tical microcircuits, and connectivity structure between brain regions in the perisyl-
vian language network?

• What is the neurobiological correlate of processing memory for unification?
How does this system support temporal integration, the resolution of non-adjacent
dependencies, and recursive function calls for compositional processing? How are
intermediate processing outcomes stored, retrieved at the right point in time, and
broadcast to where they will be used next?

• How is prior knowledge of language expressed within the neurobiological infrastruc-
ture of the language-ready brain and what is unique about human neurobiology that
enables language in the first place? Causal modeling is ideally suited to test specific
hypotheses concerning, e.g., dendritic morphology, cytoarchitectonic composition,
receptor-architectonic fingerprints, and anatomical connectivity.

• What is the structure of words stored in the mental lexicon and how does it enable
combinatorial sentence-level processing in biological networks? What kinds of rep-
resentations are supported by the underlying neurobiology? How are they encoded
and maintained in long-term memory in the presence of noise and ongoing plasticity,
and how is the feature structure of words computed from partial cues?

• How is a language-specific mental lexicon acquired given the weak, local neuro-
physiological learning mechanisms currently known, and how does learning interact
with innate structure during acquisition?

• The complexity of neurophysiology demands reduced mathematical models that
abstract away from, e.g., ion channels and the molecular machinery of synapses.
What is the appropriate level of reduction that is computationally feasible while still
being informative at the algorithmic level?
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matter, or planetary climate—from observations to statistical modeling to explaining the causal
structure of the physical system that generated the observations in the first place. Eventually,
this approach might even allow us to bridge into the genetic basis of language.

Computational models of cognitive function are in need of stronger neurobiological foun-
dations (O’Reilly, 2006) and several recent perspective articles have similarly suggested to
“close the mechanistic gap” (Paquola et al., 2022) by means of neurobiologically grounded
models of information processing (Pulvermüller et al., 2021). Our proposal is focusing on the
language domain where computational models have played a particularly prominent role.
However, neurobiological causal modeling amounts to more than neural network modeling
with a few added constraints. Rather, we propose to reconceptualize computational language
modeling and start building causal models from the ground up. This approach will not only
address the missing interfaces between levels of description but is also expected to have pro-
found ramifications at the algorithmic and functional levels themselves (Larkum, 2022). We
call to action the community of language researchers to engage with this complementary
approach and confront the challenges of investigating the neurobiology of language on the
basis of first principles of brain organization. A joint, multidisciplinary effort is needed to bring
this research program to fruition.

Causal models are formulated as systems of coupled differential equations, which is the
lingua franca of science. They describe the fundamental dynamical principles underlying cog-
nitive function in neurobiology. Hence, they provide a common, unified framework for
modeling cognition that makes different instantiations of causal models commensurable
and falsifiable (Haeffel, 2022; Popper, 1959). In the long term, this approach will lead to
better theories of language processing, the progressive accumulation of scientific knowledge,
and a deeper understanding not only of language but also other cognitive phenomena.
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